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If you drive past two connected hills, their outline changes, as in the upper diagram. A
‘T-junction’ changes to a smooth curve. The same effect can be observed (with more
trouble) walking past a two-humped camel. If the hills, or the camel, were transparent,
then the outlines would look more like the lower diagram, with two sharp points (cusps) on
the outline, and a crossing, all disappearing in the second view. This behaviour is called
instability, where some significant or dramatic change occurs when a parameter (your
viewing position) changes smoothly. This particular instability is called a swallowtail

singularity, and changing the viewing position is said to ‘unfold’ the singularity. It is
the business of singularity theory to classify such instabilities and, since they occur in
very many contexts, it is the business of people such as myself to apply the profound
results of singularity theory where they might be useful. My own research over several
decades has worked out applications in optics, symmetry, and various aspects of ‘computer
vision’. This is the science of deriving information about the world from 2-dimensional
images. Of course we, in common with most animals, do this all the time, using our
eyes to obtain information about the world. Understanding how this works is the subject
of psychophysics and that is not my field; I can only say that the combination of eye
and brain to decode information is so extraordinary that trying to imitate it by artificial
means is (at present) completely hopeless. Instead we have to use mathematical tools,
together with fast computers, to do a half-way decent job. The mathematics of singularity
theory (a combination of geometry, algebra and calculus of vector valued functions) plays
a prominent role here.

Nearly all my research has been done in collaboration with others in Europe or the United
States, some of them mathematicians, some computer scientists and some engineers. I’ll
write about two particular projects in which I have been involved. The first is about
reconstructing the 3-dimensional world from 2-dimensional information, while the second
is more like reducing shapes to their essentials, exploiting various kinds of symmetry.

Reconstruction and classification Reconstructing scenes from the real 3D world from
images—either a video film or, more challengingly, from a sequence of snapshots—is an
area of very active interest. Earlier work with a Cambridge engineer, Roberto Cipolla, was
written up in a book Visual Motion of Curves and Surfaces, and you can find a lot about
this and the fascinating later developments on Roberto’s webpage. It is rather amazing
that a real 3D model of a scene can be made without knowing much about where the
camera was positioned when taking the snapshots. Here we only need to know that the
motion is roughly circular.
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More recently I have worked on using curves in images to help with reconstruction (this
involves some pretty heavy algebra, completely unsuitable for writing about here!); and
also a thorough analysis of how illumination affects our views of surfaces as we move past
them. This work is done jointly with James Damon from the University of North Car-
olina and a former postdoc employed on a European Community funded project, Gareth
Haslinger. It actually requires the full power of recent methods of classification (due
partly to Damon, and partly to three mathematicians all of whom have connexions with
Liverpool, Bill Bruce, Andrew du Plessis and Terry Wall). To emphasize how important
shadows are to our understanding of scenes take a look at the picture below. If you can’t
quite make out what it is, turn the page upside-down!

Symmetry The symmetric shape on the left in the figure below has a straight ‘axis of
symmetry’. There is a nice way to generalize this idea. Circles centred on the axis of
symmetry will be tangent to the shape in two places, as in the middle figure. So for a
more complicated shape let’s draw circles tangent twice to the shape (and lying entirely
inside) and trace their centres, as in the blue lines on the right. These form the medial

axis of the shape.
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The instabilities—singularities—here occur at the centres of three-times-tangent circles,
where the medial axis branches in a Y shape, and at the endpoints where the medial
axis just stops and the circle becomes very tangent to the shape: the two contact places
coincide. Imagine the circle near the head of the fish sliding north-west and shrinking
until it fits snugly in the top left corner of the shape: the centre will be at the extreme
end of the medial axis. The medial axis forms a sort of ‘skeleton’ of the shape, encoding
information about it in a concise way—In fact it is very widely used to compare and
classify shapes. (There are lots of references to ‘medial axis’ and the related ‘symmetry
set’ on the internet.) Symmetry sets also trace centres of circles but allow the circles to
extend outside the shape. An example is shown on the left in the next figure: the shape is
the outer ‘rounded triangle’, the medial axis is the thick Y-curve and the symmetry set is
the complicated cuspy thin line. For example the end of the spike at the north-west is the
centre of a circle ‘very tangent’ to the shape at the south-east and completely enclosing

the shape. Although the symmetry set carries ‘more information’ than the medial axis
its complexity makes it less popular as a shape-analysis tool.

The middle two figures show a sort of ‘elliptical bin’ with a top and bottom, and, somewhat
larger, its medial axis. Here we use centres of spheres, tangent twice, to replace centres
of circles in the examples above. Medial axes and more general ‘skeletal structures’ are
being investigated intensively as they provide an excellent way of encoding 3D shapes.
On the right is shown a ‘torus knot’, first wrapped around a torus and then detached from
it. A particularly interesting challenge is to describe in detail the medial axis of ‘knot
complements’, that is all 3-space with a knot (such as the one shown) removed. Knot
complements arise in other contexts, such as ‘hyperbolic 3-manifolds’ which are related
to the famous Poincaré Conjecture.
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