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Coral reef states

Coral-dominated Algal-dominated

Photos: Diaz-Pulido et al. 2009, PLoS ONE 4:e5239



Coral reef video surveys

Image: Australian Institute of Marine Science



What do the surveys show?

46 sites, surveyed between 1996 and 2006.



Satellite measurements of sea surface temperature

Image: www.weatherzone.com.au



Year-to-year changes depend on sea surface temperature
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You may have recognized that this is a linear recurrence

sequence.
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Long-term behaviour

For t = 0, 1, 2, . . .,

xt = a(z)(1 + b + b2 + . . .+ bt−1) + btx0

We won’t prove it now, but if b is between −1 and 1, then as
t → ∞,

1 + b + b2 + . . . →
1

1− b
.

Also, if b is between −1 and 1, then as t → ∞, bt → 0.

Thus, if b is between −1 and 1, the long-term value of x will
tend to

x∗ =
a(z)

1− b
.



Behaviour of linear recurrence sequences

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a=0.1, b=0.9, x0=0

t

x
t



Behaviour of linear recurrence sequences

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

a=0.1, b=−0.9, x0=0

t

x
t



Behaviour of linear recurrence sequences

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

a=0.1, b=1.1, x0=0

t

x
t



Behaviour of linear recurrence sequences

0 20 40 60 80 100

−
60

0
−

40
0

−
20

0
0

20
0

40
0

60
0

a=0.1, b=−1.1, x0=0

t

x
t



How does reef composition depend on sea surface

temperature in the short term?

Given this year’s value of x , xt+1 = a(z) + bxt .



How does reef composition depend on sea surface

temperature in the short term?

Given this year’s value of x , xt+1 = a(z) + bxt .

In calculus, we represent how xt+1 changes with respect to

tiny changes in z by
dxt+1

dz
.



How does reef composition depend on sea surface

temperature in the short term?

Given this year’s value of x , xt+1 = a(z) + bxt .

In calculus, we represent how xt+1 changes with respect to

tiny changes in z by
dxt+1

dz
.

The chain rule says that this is the product of how xt+1

changes with respect to tiny changes in a(z), and how a(z)
changes with respect to tiny changes in z :

dxt+1

dz
=

dxt+1

da(z)
×

da(z)

dz
.



How does reef composition depend on sea surface

temperature in the short term?

Given this year’s value of x , xt+1 = a(z) + bxt .

In calculus, we represent how xt+1 changes with respect to

tiny changes in z by
dxt+1

dz
.

The chain rule says that this is the product of how xt+1

changes with respect to tiny changes in a(z), and how a(z)
changes with respect to tiny changes in z :

dxt+1

dz
=

dxt+1

da(z)
×

da(z)

dz
.

If we increase a(z) by some tiny amount, xt+1 increases by

the same amount, so
dxt+1

da(z)
= 1 and
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dz
.
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In the long term, we will tend to the value x∗ =
a(z)

1− b
.

Using the chain rule as before,

dx∗

dz
=

dx∗

da(z)
×

da(z)

dz
.

If we increase a(z) by a tiny amount, x∗ increases by
1

1− b

times that amount, so
dxt+1

da(z)
=

1

1− b
and
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=

1
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×

da(z)

dz
.
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Short- versus long-term effects of sea surface temperature

The effect of a tiny increase in sea surface temperature on

next year’s reef composition is
da(z)

dz
.

The effect of a tiny increase in sea surface temperature on

long-term reef composition is
1

1− b
×

da(z)

dz
.

Which is bigger? Remember we assumed −1 < b < 1.



Some real data
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Adding a random component

In the real world, unpredictable things happen. To describe
this in our model, we need to add a random component:

xt+1 = a(z) + bxt + ǫt ,

where ǫt is “noise” (the unpredictable part).



Adding a random component

In the real world, unpredictable things happen. To describe
this in our model, we need to add a random component:

xt+1 = a(z) + bxt + ǫt ,

where ǫt is “noise” (the unpredictable part).

We’ll assume that ǫt has a normal distribution with mean 0
and variance σ2.



The normal distribution
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The standard deviation is the square root of the variance.



How does this model behave?

Suppose we know the value of x at time 0, and sea surface
temperature has some constant value z .

x1 = a(z) + bx0 + ǫ0



How does this model behave?

Suppose we know the value of x at time 0, and sea surface
temperature has some constant value z .

x1 = a(z) + bx0 + ǫ0

x2 = a(z) + bx1 + ǫ1



How does this model behave?

Suppose we know the value of x at time 0, and sea surface
temperature has some constant value z .

x1 = a(z) + bx0 + ǫ0

x2 = a(z) + bx1 + ǫ1

= a(z) + b (a(z) + bx0 + ǫ0) + ǫ1



How does this model behave?

Suppose we know the value of x at time 0, and sea surface
temperature has some constant value z .

x1 = a(z) + bx0 + ǫ0

x2 = a(z) + bx1 + ǫ1

= a(z) + b (a(z) + bx0 + ǫ0) + ǫ1

= a(z)(1 + b) + b2x0 + ǫ1 + bǫ0.



How does this model behave?

Suppose we know the value of x at time 0, and sea surface
temperature has some constant value z .

x1 = a(z) + bx0 + ǫ0

x2 = a(z) + bx1 + ǫ1

= a(z) + b (a(z) + bx0 + ǫ0) + ǫ1

= a(z)(1 + b) + b2x0 + ǫ1 + bǫ0.

x3 =???



Long-term behaviour

For t = 0, 1, 2, . . .,

xt = a(z)(1 + b + b2 + . . .+ bt−1) + btx0

+ ǫt−1 + bǫt−2 + b2ǫt−3 + . . .+ bt−1ǫ0
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For t = 0, 1, 2, . . .,

xt = a(z)(1 + b + b2 + . . .+ bt−1) + btx0

+ ǫt−1 + bǫt−2 + b2ǫt−3 + . . .+ bt−1ǫ0

We need to figure out how the noise term behaves as t gets
large.



What happens to the noise terms?
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Multiplying by b keeps the mean at zero. The standard deviation is
also multiplied by b, so the variance (the square of the standard
deviation) is multiplied by b2.
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Adding up the noise terms

At time t, we have noise terms

ǫt−1 + bǫt−2 + b2ǫt−3 + . . .+ bt−1ǫ0

Each of these terms has mean 0, so their sum also has mean 0.

The variances are σ2, b2σ2, b4σ2, . . .

If we assume each noise term is independent of the others, the
variances also add up, to give

V = σ2 + b2σ2 + b4σ2 + . . .+ b2(t−1)σ2

= σ2(1 + b2 + b4 + . . .+ b2(t−1))
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Adding up the noise terms

We already know that if b is between −1 and 1, then as
t → ∞,

1 + b + b2 + . . . →
1

1− b
.

We have something that looks similar:

V = σ2(1 + b2 + b4 + . . .+ b2(t−1))

= σ2(1 + (b2) + (b2)2 + . . .+ (b2)(t−1))

It’s really exactly the same, but with b2 instead of b. So if b2

is between −1 and 1 (when will this be true?), then as t → ∞,

V →

σ2

1− b2
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Long-term behaviour

For t = 0, 1, 2, . . .,

xt = a(z)(1 + b + b2 + . . .+ bt−1) + btx0

+ ǫt−1 + bǫt−2 + b2ǫt−3 + . . .+ bt−1ǫ0

As t → ∞, xt will approach mean a/(1− b) (the same as
before) and variance σ2/(1− b2).



Running this model once

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

a=0.1, b=0.9, x0=0, σ2=0.01

t

x
t



What do we expect from this model?
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Increasing the variance
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Modelling the Great Barrier Reef

The real world is a bit more complicated:

A reef is more than just coral. We studied the proportions of
seabed covered by corals, algae, and everything else.

This means that sea surface temperature effects will have a
direction as well as a magnitude.

We have to account for other variables such as fishing and
nutrients running off the land.

We have to check the condition equivalent to b being between
−1 and 1: it was true for the Great Barrier Reef.



Direction of short- and long-term effects of a warmer

climate
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Long-term behaviour under current climate



Long-term behaviour in a warmer climate



Probabilities of low coral cover and high algal cover
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Warmer sea surface temperatures tend to reduce coral cover
and increase algal cover on coral reefs, but the short-term and
long-term effects are different.

The reason for the difference can be at least partly
understood with A-level mathematics (using ideas that
included sequences, calculus and probability).

You can read the full results at
http://www.liv.ac.uk/~matts/stochasticgbr.html.

Lots of great pictures and videos of coral reefs:
http://catlinseaviewsurvey.com/.

http://www.liv.ac.uk/~matts/stochasticgbr.html
http://catlinseaviewsurvey.com/
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